
1 | P a g e

CS 4504
PARALLEL & DISTRIBUTED COMPUTING

PROJECT REPORT – PART 1

 Spring 2024

Instructor - Dr. Patrick Bobbie

Names: Eli Headley/02, Charlie McLarty/02, Sam Bostian/02,

Ernesto Perez/02, Daron Pracharn/02, Michael Rizig/02, and

Jonathan Turner/W01

Abstract—The Client-Server paradigm is a

fundamental model in distributing

computing; the design of Client-Sever

distinguishes between two asymmetric roles:

servers, providers of a resource or service,

and clients, who requests resources or

services from the servers in a network. The

model abstracts the synchronization and

2 | P a g e

delivery of messages: the always-online server

waits for requests, and the client sends a

request and waits for a response. Compared

to the more basic message passing paradigm,

where every computer in a network must

personally handle both sending and receiving

message synchronization, the model-server

model simplifies communication. Typically, a

router is used to direct traffic, and acts as a

repository for IP addresses. In this project we

created a basic network to investigate the use

of a Client-Server model in distributed

computing. Given Java code for setting up the

role of a client, server, or a router, we created

a network between pairs of Clients and

Servers, and a router to direct traffic and

build a routing table. We initially investigated

sending and modifying strings of characters

over our next work, but we later modified the

code to support transmitting audio and video

files. Performance metrics such as

transmission time, and routing-table lookup

were also modified in the code.

Keywords—

1 Introduction

The client-server is a distributed
computing paradigm often associated with
network communications due to the

clear division of roles for the collaborating
processes. It includes a client process that will

make requests to a separate always online server

process whose job is to wait for and handle
requests coming from clients. This abstracts the

message-passing paradigm and simplifies
communication synchronization. This report

aims to implement a simple message-passing
system for text, video, and images that utilizes a

server router to redirect communication for
multiple client-server pairs. The time to establish

the connection and send the data between client
and server.

The remainder of the paper is organized

as: The design section summarizes the overall

plan and layout of our project. The
implementation section which provides the

specifications of our TCPServerRouter,
SThread, our Client and Server implementation

in the Java programming language. The
Simulation section presents the metrics used to

test our implementation as well as the results.
The final section, the Conclusion, discusses the
takeaways and experience gained in this project.

2 Design Architecture:
As shown in Figure 1 the server router

listens for requests for connections on socket

3 | P a g e

port 5555, and for each node connected it adds

the node and its IP address to the routing table.
For every client/server pair, right and left of the

Server Router in Figure 1, the server router
creates an SThread that facilitates data flow to
and from the client-server pair.

The client begins by connecting to a

router, and after sending the IP of the server it

wishes to connect to, it sends the file one byte at
a time through an OutputStream on socket port

5555. At the router, the dedicated SThread [6]
looks up the destination in the routing table and

takes in the data in an array of bytes, the buffer,
before sending it to the destination. An SThread

object is just a Java thread in the router that
handles a client/server pair. At the server’s end,

expecting an array of bytes from a specified
client address, takes in the data and writes it to a
file.

3 Implementation

Approach:
The final implementation of this project

revolves around 4 files: TCPServerRouter.java,
JSThread.java, Client.java and Server.java.

TCPServerRouter:

Upon execution of

TCPServerRouter.java, a ServerSocket [3]
object is instantiated along with a routing table

implemented as a two-dimensional Object array

with ten rows and two columns. The first
column represents the IP address in a string

format, and the second column contains the
socket object used to facilitate connections.

Afterwards, the Server Socket calls the accept()
method blocking the execution of the process

until a connection is received. After receiving
the connection, it is saved into a socket object

called clientSocket. Subsequently, the routing
table is updated to include the IP address of the

new connection and its associated socket before
passing it to a thread implemented in
SThread.java.

String[] ip =
(clientSocket.getRemoteSocketAddress() +
"").split(":");
pw.println(ip[0].substring(1)); //this
line updates the routing table with a new
line holding the clients ip in slot one
and a delimiter eg. [clients ip] , [slot
for servers ip]
pw.flush();
RoutingTable[ind][0] =
ip[0].substring(1);
RoutingTable[ind][1] = clientSocket;
SThread t = new SThread(RoutingTable,
clientSocket, ind); // creates a thread
with a random port

SThread:

From here, the SThread is created, and
running it is as simple as calling t.start(). at this

point, the threads constructer will take the

passed table with Ip's and sockets, as well as the
connection socket and pass information from the

client socket to the desired output socket from
the routing table. This works because as soon as

a client or server connects, its OutputStream [4]
push is the address of its intended connection to

the threads InputStream [5], who saves that as a
string. This string is then run against the table,

and when a match is found, it creates an output
stream to the corresponding socket in the second

column of the routing table. This can be seen
below:

// loops through the routing table to
find the destination
for (int i = 0; i < 10; i++) {
 if (destination.equals((String)
RTable[i][0])) {
 outSocket = (Socket)
RTable[i][1]; // gets the socket for
communication from the table
 System.out.println("Found
destination: " + destination);
 outToClient =
outSocket.getOutputStream(); // assigns a
writer
 }
}

Client and Server:

4 | P a g e

The client and server work in a similar

fashion as they both have the server router IP
address and port (which is the same for the

client, server, and router) saved in separate
strings in order to create a socket that is used to

connect to the server router. Their destinations
are pushed to the server router thread which will

handle communication. However, for the actual
transmission of data, the client’s role is to send

the data while the server will receive it and
respond in certain scenarios. If the file sent is a

text file, the server will respond by converting
the message to uppercase and sending it back to

the client. If the file’s format is not a text (video,
audio, image, etc.), then the server will not
respond to the client.

Communication Loop:

Step 1: Host Send

The communication loop works sending
a byte stream. We implemented this by utilizing

the DataOutputStream and DataInputStream to
send raw bytes through the sockets. We also

utilize a FileInputStream to read bytes from the
input file, which is stored in a file object. By

utilizing a buffer, we can take bytes from the
input file, load them into a buffer array of bytes,

and pass them through the data output socket. If
the buffer is empty, meaning no more bytes exist

to be sent, the method fis.read(buffer) will return
–1, meaning the connection loop should exit and

stop sending. Below is a snippet of code used to
send the mp4 file as a byte stream through the
socket to the SThread.

//Variables for MP4 send
File videoFile = new
File("src/Client/cat.mp4");
//creates file for mp4
byte[] videoBytes = new byte[8192];
//creates a byte buffer for video bytes
InputStream dis =
socket.getInputStream();
OutputStream dos =
socket.getOutputStream();
int sentCount = 0;
FileInputStream fis = new
FileInputStream(videoFile);

//write file to dos

while ((sentCount =
fis.read(videoBytes)) != -1) {
 dos.write(videoBytes, 0, sentCount);
}

Step 2: Packet Switching

The next step of the communication
between hosts is the SThread created by the

serverRouter routing the packets to the
destination. This is done in a communication

loop stored in the SThread which simply accepts

the bytes and passes them directly to the other
socket of the thread that was identified earlier in

SThread. This works in a simple loop that takes
in a line from the inputStream and passes it to
the output stream. This can be seen below:

// Communication loop
byte[] buffer = new byte[8192];
int count;
try {
 while ((count =
inFromClient.read(buffer)) > 0) {
 if (outToClient != null) {
 outToClient.write(buffer, 0,
count);
 }
 }
}

Step 3: Host Recieve

The final step of the communication
happens on the receiving end (client or server)

which involves the server receiving the byte

stream and rebuilding it into the original file
sent. This works by taking the input stream

from the socket and creating a FileOutputStream
into a new file named received.x with x

representing the respective file type being sent
or received. The next step is to pass each buffer

size worth of bytes from the data input stream
into the output stream which is the file. This can
be seen below:

InputStream dis =
Socket.getInputStream();
byte[] buffer = new byte[8024];
//creates a 1gb buffer
int bytesRead = 0; //to keep track of
how many bytes read
FileOutputStream fos = new

5 | P a g e

FileOutputStream("src/Server/Received.mp4
");
while ((bytesRead = dis.read(buffer)) !=
-1) {
 fos.write(buffer, 0, bytesRead);
 fos.flush();
}

When this while loop concludes (the buffer is
empty causing the read() to return -1) the file

should be completely built, and the
communication will cease. At this point, the file

has sent from the sender, through the
serverRouter and finally to the receiver. This

concludes the communication loop. Modified
versions of this loop are used to send different

file types, and to resend/respond to requests
from the client (such as when the server
capitalizes the text and returns it to the client).

4 Simulation Method:
For our experimental setup we conducted
three separate simulations where are client
computer transmitted various types of files
and files sizes to the server computer. This
was done to measure the efficiency of our
network on Text, Audio, and Video files of
varying sizes. For each set of test files we
conducted three runs with 27 runs in total
and 9 runs for each file type.

Text Files:

For the first experiment we used three
generated text files filled with random
characters. The first file sent was a small file,
1KB in size, the second was 488KB of data,
and the final text file was a 9.53MB text file.

Audio Files:

Like our text files we again used 3 test
files for our Audio experiment. The three file

sizes used were: 139KB for the small file, 3.62
MB for the medium sized file, and 17.2MB for
the large file.

Video Files:

In our final experiment we transmitted

three video test files of the .mp4 format from the
client to the server computer. The three

respective sizes for the small, medium, and large
files were as follows: 98.5KB, 10.7MB, and
95.9MB.

6 | P a g e

Run #1 Run #2 Run #3

139 KB 27 32 27

3.62 MB 4458 4372 4318

17.2 MB 6478 6675 6759

Audio Files

Message Size
Transmission Time (ms)

Run #1 Run #2 Run #3

98.5 KB 22 23 21

10.7 MB 5177 5309 5304

95.9 MB 19669 19912 20668

Video Files

Message Size
Transmission Time (ms)

The Client-Server model is a
fundamental model because it abstracts event

synchronization between the two nodes. The

client needs only to send its request and wait for
a response. The server’s job consists entirely of

a continuous loop of listening for requests and
fulfilling them. This is much simpler than using

message passing, where nodes must be involved
in event synchronization because they are given

entire control over the messages sent. More
abstract models like object space, mobile agent,

and remote procedure call can be more adequate
for specific problems, but typically come at a
cost of more overhead.

5 Data Analysis:

As shown in the two graphs above, there is a
linear relationship between transmission time
and file size. This is especially noticeable in
the comparison of video file transmission
speed because there is a larger range in file
size. Such a linear relationship is to be
expected because the entire operation is just
sending a 1 to 1 file between two nodes.

7 | P a g e

Factors that may affect the curve of graphs
would have included more than one client for
a server or modifying the file in some way.

6 Conclusion:
In this paper, we created our implementation of
the client-server paradigm for transmitting

messages between multiple hosts in Java. The
client and server pair would each establish a
connection to the server router which in turn

would assign them a thread to handle the
connection and allow data to be transmitted back

and forth between client and server. This method
works for most data types including text, audio,
and video which were used in our simulation,

because the data being transmitted was in the
form of a byte stream.

Timings were taken for each test transmission for

various file types, and it showed consistent
results when transmitting the same file multiple
times. Additionally, the tests showed a linear

relationship between the message size and the
transmission time regardless of file type which

was expected.

The client server implementation proved to be
ideal for communication over a network due to
the clear division of roles simplifying the

synchronization process during communication.

7 References:

[1] M.-L. L. Liu, Distributed Computing:
Principles and Applications. Boston,
Mass: Pearson, 2004.

[2] “Socket”. Java Platform, SE 8, API
Specification,
https://docs.oracle.com/javase/7/docs/
api/java/net/Socket.html . Accessed
March 3, 2024.

[3] “ServerSocket”. Java Platform, SE 8 API
Specification,
https://docs.oracle.com/javase/8/docs/
api/java/net/ServerSocket.html .
Accessed March 3, 2024

[4] “InputStream”. Java Platform, SE 8 API
Specification,
https://docs.oracle.com/javase/8/docs/
api/java/io/InputStream.html .
Accessed March 3, 2024.

[5] “OutputStream”. Java Platform, SE 8
API Specification,

https://docs.oracle.com/javase/8/docs/
api/java/io/OutputStream.html .
Accessed March 3, 2024.

[6] “Thread”. Java Platform, SE 8 API
Specification,
https://docs.oracle.com/javase/8/docs/api/jav
a/lang/Thread.html . Accessed March 3,
2024

[7] “BufferedReader”. Java Platform, SE 8
API Specification,
https://docs.oracle.com/javase/8/docs/api/jav
a/io/BufferedReader.html Accessed March
3, 2024.

8 Appendix:
User-Guide: In order to connect client to server,
using the server router, the IP addresses of the

client, server, and server router are required. On
the client side the IP address of the server router

8 | P a g e

is placed inside the string variable

“routerName”. Then the IP address of the server
will be placed inside the string variable

“address”. On the server side you need the to
place the server router IP address under the

string variable “routerName” and the client IP
address under the string variable “address”.

Once the necessary information is entered
simply run the program.

